

A BROADBAND, HIGH DIRECTIVITY 3 DB COUPLER USING COPLANAR WAVEGUIDE TECHNOLOGY.

E. RIUS, T. LE GOUGUEC, K. HETTAK, J. P. COUPEZ, S. TOUTAIN

Laboratoire d'Electronique et Systèmes de Télécommunications (L.E.S.T.) - URA CNRS n° 1329
U.B.O. - 6, av. Le Gorgeu - BP 809 -29285 BREST CEDEX-FRANCE-Tel : 98 01 61 26-Fax : 98 01 63 95
ENSTBr - BP.832 - 29285 BREST CEDEX-FRANCE-Tel : 98 00 13 68-Fax : 98 00 13 43

ABSTRACT

We propose to design high directivity - high level couplers using coplanar waveguide technology. This allows geometrical parameters to be chosen to design 3 dB couplers while limiting the difference between the phase velocities of the normal modes in order to obtain higher directivity. A 40 % bandwidth, 30 dB directivity 3 dB coupler is achieved.

Introduction

Microstrip couplers present intrinsic limitations for the obtention of high level - high directivity couplers. We propose to design such couplers by using coplanar waveguide technology. As this technology allows different geometrical parameters to be chosen to obtain the same characteristics, it is possible to design a large range of coupling with high directivity, while limiting the difference between the phase velocities of the normal modes. In this paper we present the design of 3 dB coupler using the coplanar technology. To illustrate our purpose, a 40 % bandwidth 30 dB directivity 3 dB coupler is achieved.

Microstrip technology limitations

Two difficulties arise for the design of 3 dB microstrip couplers :

1 - the necessity to make very tiny slots between

the two coupled lines in order to obtain high level coupling.

2 - the difference in the phase velocities of the two normal modes (even and odd modes) which drastically limits isolation between the coupled arms.

Coplanar technology flexibility

Some compensation techniques have been proposed [1],[2],[3],[4],[5] but then, the design and the technological process are complicated. As more parameters can be varied, the design of coplanar couplers is easier. As presented in table 1, it is possible to choose different values for the geometrical parameters (w, s, g,) in order to obtain, for instance, a 8 dB coupler. The coupled region is characterized by two transmission lines with characteristic impedances, Z_{oo} and Z_{oe} , and two effective relative dielectric constants ϵ_{reffe} and ϵ_{reffe} . The second subscript refers to odd and even modes respectively. The characteristic impedance Z_o and the coupling factor K can be determined by the following expressions :

$$Z_o = \sqrt{Z_{oe} \cdot Z_{oo}} \quad (1)$$

$$K = 20 \cdot \log \left(\frac{Z_{oe} - Z_{oo}}{Z_{oe} + Z_{oo}} \right) \quad (2)$$

WE
3E

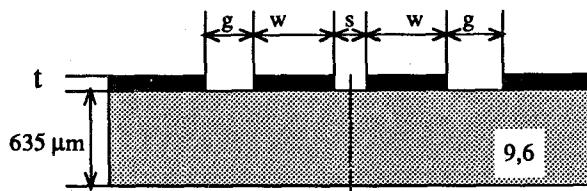


fig.1 : A coplanar coupler

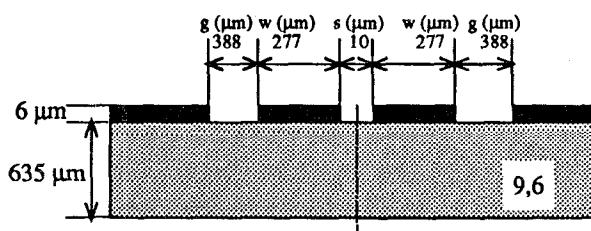
(a)						
g μm	30,8	36,8	42,8	127	161	245
w μm	75,5	92,5	110	48,5	59,7	85
s μm	25	30	35	40	50	75
t μm	2,5	2,5	2,5	2,5	2,5	2,5
$Z_{0e} \Omega$	76,2	76,2	76,2	76,2	76,2	76,2
$Z_{0o} \Omega$	32,8	32,8	32,8	32,8	32,8	32,8
$Z_0 \Omega$	50	50	50	50	50	50
K dB	-8	-8	-8	-8	-8	-8
ϵ_{effe}	5,11	5,13	5,13	5,13	5,11	5,02
ϵ_{effo}	5,06	5,1	5,13	5,15	5,18	5,21

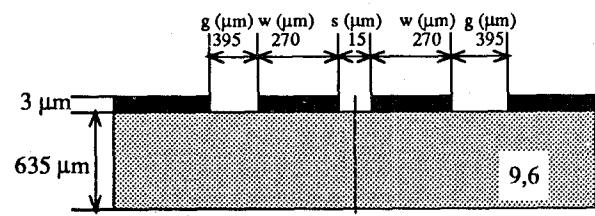
table 1

Such flexibility in the design allows the difference between the phase velocities of the two normal modes to be compensated so as to obtain theoretical infinite isolation.

We applied this technique to the design of high isolation 3 dB couplers in coplanar waveguide technology. As dispersion is weak for the coplanar waveguide we used quasi static approaches to define the geometry of the coupler. Conformal transformations [6] enables a first design to obtain this is corrected by the use of the finite difference method [7].

As presented in figure 2a, the optimum design requires a 10 μm width slot to be made.




fig. 2.a : The optimum design

$k = 3 \text{ dB}$
 $Z_0 = 50 \Omega$
 $\epsilon_{\text{effe}} = 4,65$
 $\epsilon_{\text{effo}} = 4,66$
isolation = 70 dB

fig. 2.a : The optimum design

Experimental results

From a technological point of view, some difficulties appear, in this case, in making such a slot dimension. So, we preferred to fix the slot width at 15 μm as presented in figure 2b, the other geometric parameters being determined to limit the difference between the phase velocities of the two normal modes.

$k = 3,46 \text{ dB}$
 $Z_0 = 54,29 \Omega$
 $\epsilon_{\text{effe}} = 4,67$
 $\epsilon_{\text{effo}} = 5,03$
isolation = 40 dB

fig. 2.b : Dimension of the design

The structure we chosen is presented in figure 2b. Figures 3.a, 3.b, 3.c and 3.d present the variations with the frequency of the main characteristics of the coupler. We can observe a good agreement between theoretical and experimental results. Some differences appear at higher frequencies in relation to the difficulty of taking into account all the effects of the discontinuities which appear in the input and the output plane of such a coupler.

As presented in figure 4a and 4b, the relative bandwidth of the coupler designed is about 40 %.

Conclusion

The flexibility of coplanar technology permits the design of high level - high directivity couplers. Moreover, the possibility of equalizing the odd and even mode velocities simply allow broadband couplers to be made at a lower cost. We are currently studying the possibility of obtaining very broadband designs with the same technique. A multi octave coupler will be designed in the future.

References

- [1] H.J. HERZOG, "Microstrip couplers with improved directivity", Electronics Letters, vol 14, n°3, 2nd FEB 1978, pp. 50-51
- [2] M. DYDYK, "Accurate design of microstrip directionnal couplers with capacitive compensation", Digest of IEEE Microwave Theory and Techniques Symposium, Dallas 1990, pp. 581-584
- [3] B. SHELEG, B.E. SPIELMAN, "Broadband directional couplers using microstrip with dielectric overlays", IEEE Trans on Microwave Theory and Techniques, vol 22, n°12, DEC 1974, pp. 1216-1219
- [4] D.D. PAOLINO, "MIC overlay coupler design using spectral domain techniques" IEEE Trans on Microwave Theory and Techniques, vol 26, n°9, DEC 1978, pp. 646-649
- [5] M. KOBAYASHI, R. TERAKADO, "Method for equalizing phase velocities of coupled microstrip lines by using anisotropic substrate", IEEE Trans on Microwave Theory and Techniques, vol 28, n°7, JULY 1980,

- [6] pp. 719-722
C.P. WEN, "Coplanar waveguide directionnal couplers", IEEE Trans on Microwave Theory and Techniques, vol 18, n°6, JUNE 1970, pp. 318-322
- [7] H.E. GREEN, "The numerical solution of some important transmission-line problems", IEEE Trans on Microwave Theory and Techniques, vol 13, n°5, SEP 1965, pp. 676-692

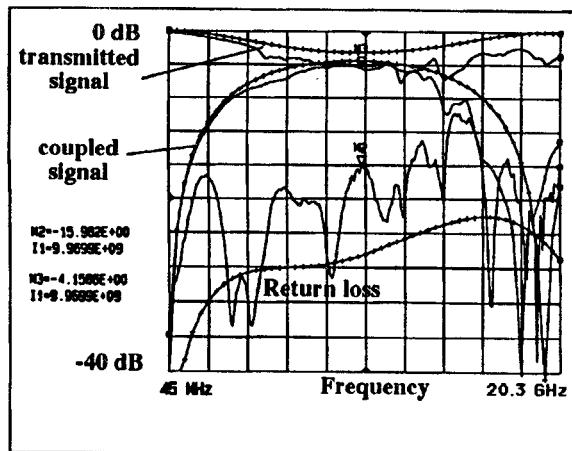


fig. 3.a

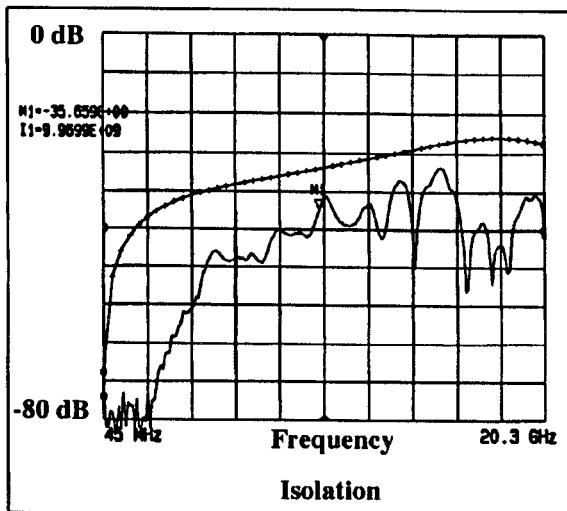


fig. 3.b

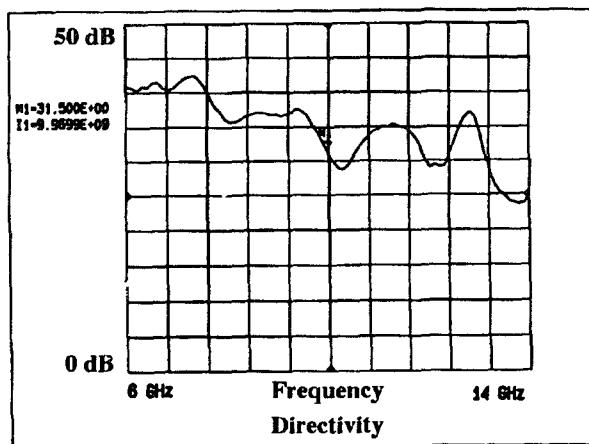


fig. 3.c

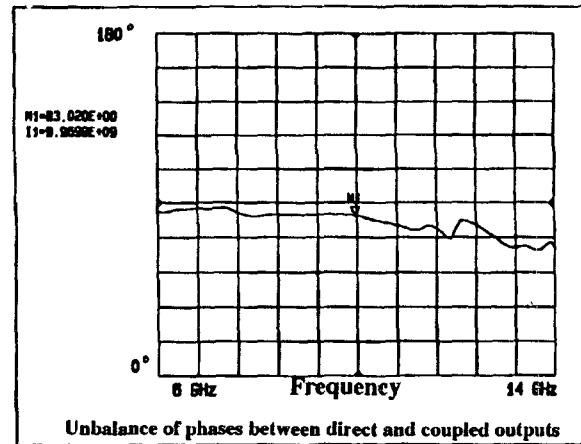


fig. 4.a

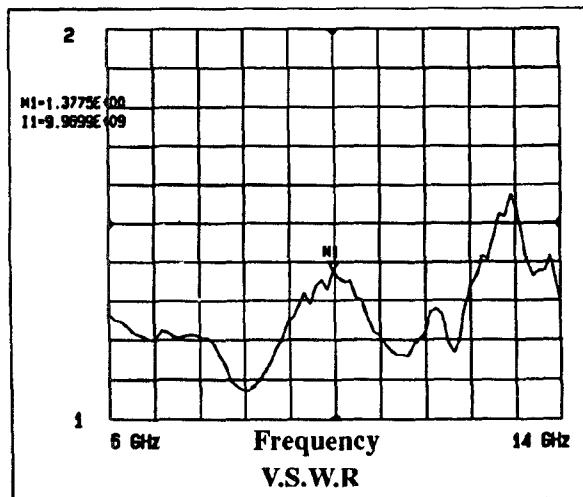


fig. 3.d

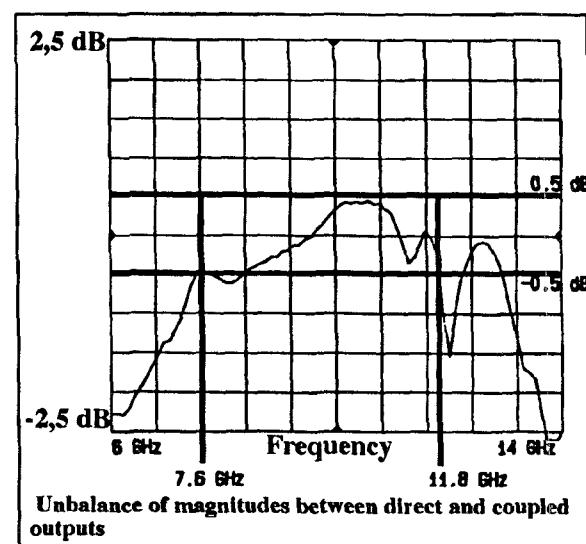


fig. 4.b